

## **Product User Guide**

version 1.0, 17 January 2020



Photo credit: Sascha Thiele

| Author                           | Approved  | Signature | Date       |
|----------------------------------|-----------|-----------|------------|
| JF Piolle, G Dodet,<br>Ellis Ash | Ellis Ash | thi h     | 17/01/2020 |
| ESA Approval                     |           |           |            |

| Issue | Date       | Comments                                                                                                 |
|-------|------------|----------------------------------------------------------------------------------------------------------|
| 0.9   | 19/09/2019 | Full draft submitted for ESA comment                                                                     |
| 1.0   | 17/01/2020 | Addition of release notes, list of acronyms, other minor updates.<br>Formal submission for ESA approval. |

## Contents

| List of Acronyms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>1. Introduction</li> <li>1.1 Purpose and structure of document</li> <li>1.2 Release notes for Sea State data version 1.0 (20th June 2019)</li> <li>1.3 Release notes for Sea State data version 1.1 (5th July 2019)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | <b>7</b><br>7<br>7<br>8                                                                                                                                                                                                            |
| 2. Quick Start and FAQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                  |
| <ul> <li>3. General Products Description</li> <li>3.1 Products overview</li> <li>3.2 Altimeter missions</li> <li>3.3 Format</li> <li>3.4 Data access, organisation and file naming</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>10</b><br>10<br>10<br>11<br>11                                                                                                                                                                                                  |
| <ul> <li>4. Version 1 Dataset Content <ul> <li>4.1 L2P</li> <li>4.1.1 Content overview</li> <li>4.1.2 Processing details</li> <li>4.1.2.1 Variables from L2</li> <li>4.1.2.2 SWH quality level and rejection flags</li> <li>4.1.2.3 Adjusted SWH</li> <li>4.1.2.4 SWH uncertainties</li> <li>4.1.2.5 Denoised SWH</li> <li>4.1.2.6 Adjusted Sigma0</li> <li>4.1.2.7 Wind speed</li> <li>4.1.2.8 Model data</li> <li>4.1.2.9 Sea Surface Height</li> <li>4.1.2.10 Sea ice concentration</li> <li>4.1.2.11 Bathymetry</li> <li>4.1.2.12 Distance to coast</li> <li>4.1.3 Global attributes</li> <li>4.1.4 Planned improvements</li> </ul> </li> </ul> | <ul> <li>13</li> <li>13</li> <li>15</li> <li>15</li> <li>17</li> <li>19</li> <li>21</li> <li>22</li> <li>23</li> <li>25</li> <li>25</li> <li>27</li> <li>27</li> <li>28</li> <li>28</li> <li>29</li> <li>32</li> <li>33</li> </ul> |
| 4.3 Version 1 dataset: L4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34                                                                                                                                                                                                                                 |
| 5. Differences with GlobWave L2P products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                                                                                 |
| 6. L2P editing criteria<br>6.1 Topex<br>6.1.1 sanity checks<br>6.1.2 SWH outlier test<br>6.1.3 sea-ice test<br>6.1.4 SWH rejection flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>39</b><br>39<br>39<br>39<br>39<br>39                                                                                                                                                                                            |

| 6.2 ERS-1                | 40 |
|--------------------------|----|
| 6.2.1 sanity checks      | 40 |
| 6.2.2 SWH outlier test   | 40 |
| 6.2.3 sea-ice test       | 40 |
| 6.2.4 SWH rejection flag | 40 |
| 6.3 ERS-2                | 41 |
| 6.3.1 sanity checks      | 41 |
| 6.3.2 SWH outlier test   | 41 |
| 6.3.3 sea-ice test       | 41 |
| 6.3.4 SWH rejection flag | 42 |
| 6.4 GFO                  | 42 |
| 6.4.1 sanity checks      | 42 |
| 6.4.2 SWH outlier test   | 43 |
| 6.4.3 sea-ice test       | 43 |
| 6.4.4 SWH rejection flag | 43 |
| 6.5 Envisat              | 44 |
| 6.5.1 sanity checks      | 44 |
| 6.5.2 SWH rms test       | 44 |
| 6.5.3 SWH outlier test   | 44 |
| 6.5.4 sea-ice test       | 44 |
| 6.5.5 SWH rejection flag | 44 |
| 6.6 Jason-1              | 45 |
| 6.6.1 sanity checks      | 45 |
| 6.6.2 SWH rms test       | 45 |
| 6.6.3 SWH outlier test   | 46 |
| 6.6.4 sea-ice test       | 46 |
| 6.6.5 SWH rejection flag | 46 |
| 6.7 Jason-2              | 47 |
| 6.7.1 sanity checks      | 47 |
| 6.7.2 SWH rms test       | 47 |
| 6.7.3 SWH outlier test   | 47 |
| 6.7.4 sea-ice test       | 47 |
| 6.7.5 SWH rejection flag | 48 |
| 6.8 Jason-3              | 48 |
| 6.8.1 sanity checks      | 48 |
| 6.8.2 SWH rms test       | 48 |
| 6.8.3 SWH outlier test   | 49 |
| 6.8.4 sea-ice test       | 49 |
| 6.8.5 SWH rejection flag | 49 |
| 6.9 Cryosat-2            | 50 |
| 6.9.1 sanity checks      | 50 |
| 6.9.2 SWH rms test       | 50 |
| 6.9.3 SWH outlier test   | 50 |
| 6.9.4 sea-ice test       | 50 |

| Annex B: Validation of the Sea State CCI dataset V1                    | 57 |
|------------------------------------------------------------------------|----|
| Annex A: Calibration of Jason-1, Jason-3, Saral and Cryosat-2 missions | 53 |
| 6.9.5 SWH rejection flag                                               | 52 |
| 6.9.4 sea-ice test                                                     | 52 |
| 6.10 AltiKa                                                            | 51 |
| 6.9.5 SWH rejection flag                                               | 51 |

## List of Acronyms

| CCI   | Climate Change Initiative                        |
|-------|--------------------------------------------------|
| CMEMS | Copernicus Marine Environment Monitoring Service |
| CPU   | Central Processing Unit                          |
| ECV   | Essential Climate Variable                       |
| ESA   | European Space Agency                            |
| FAQ   | Frequently Asked Questions                       |
| FTP   | File Transfer Protocol                           |
| GDR   | Geophysical Data Record                          |
| HPC   | High Performance Computing                       |
| IPF   | Input Processor Function?                        |
| L1A   | Level 1A                                         |
| L1B   | Level 1B                                         |
| L2P   | Level 2 Preprocessed                             |
| L3    | Level 3                                          |
| L4    | Level 4                                          |
| LRM   | Low Rate Measurement                             |
| PUG   | Product User Guide                               |
| RA    | Radar Altimeters                                 |
| RR    | Round Robin                                      |
| S3A   | Sentinel-3A                                      |
| S3B   | Sentinel-3B                                      |
| SAR   | Synthetic Aperture Radar                         |
| SSH   | Secure Shell / Sea Surface Height                |
| SWH   | Significant Wave Height                          |
| WV    | Wave (mode for SAR)                              |

## 1. Introduction

#### **1.1 Purpose and structure of document**

This document presents the Product User Guide (PUG) for **Sea\_State\_cci**. This first version is prepared as a guide to the version 1.1 sea state products that have been made available in July 2019, updating and extending products from the GlobWave project. An updated version of this document, supporting further versions of products, will be produced upon each update of the data products. This is anticipated in 2020 and 2021.

The remainder of this Product User Guide is structured as follows. It includes a general description of the version 1 products and provides the specific variable content of the datasets. Annexes describe the calibration and validation of the data:

- Section 2: Quick start and FAQ
- Section 3: General products description
- Section 4: Version 1 dataset content
- Section 5: Differences from GlobWave L2P products
- Section 6: L2P editing criteria
- Annex A: Calibration of Jason-1, Jason-3, Saral and Cryosat-2 missions
- Annex B: Validation of Sea State CCI dataset v1

#### 1.2 Release notes for Sea State data version 1.0 (20th June 2019)

This dataset is the first version (version 1) of CCI Sea State products, built upon the heritage of ESA GlobWave project. It extends and improves the GlobWave altimeter time series, based on a post-processing of existing L2 altimeter agency products (GDRs) with updated editing, cross-altimeter intercalibration, uncertainties and additional variables, including a denoised Hs using an EMD based filter.

Three products are delivered:

- L2P : Along-track products separated into satellite directories, including all measurements with flags, corrections and extra parameters from other sources. These are expert products with rich content and no data loss.
- L3 : Edited merged daily products retaining only quality-checked measurements from all altimeters over one day (one daily file), with simplified content (only a few key parameters). This is close to what is delivered in NRT by CMEMS project.
- L4 : Monthly gridded products averaging quality\_checked measurements from all available altimeters over a fixed resolution grid (1°x1°). These products are meant for statistics and visualization through CCI toolbox.

#### Known issues

Some issues remain in the provided time series that will be addressed in upcoming new versions.

• the time series starts in 1991 with ERS-1 and stops in December 2018. Previous or newer missions (like GeoSat, SRAL altimeters onboard Sentinel-3A & 3B) will be added later.

- the processing of some missions may relies on older GDR versions. New offers (like Envisat v3.0 dataset, ERS-1 and ERS-2 REAPER datasets) still need to be investigated and may replace later the currently used input GDR products.
- some model variables (from ERA5 reanalysis) are not yet filled in (sea surface temperature and total liquid water content) or still missing over some time periods (before 2000): this is due to missing input ERA5 data at the time of this release's processing and it will be completed soon.
- improvements in the editing of L2 measurements are still under investigation, in particular over sea ice areas, slicks and strong wind areas
- estimate of the mean square slope will be added in future release
- intercalibration of the sigma0 will be carried out for all altimeters and calculation of a cross calibrated wind speed based on a bivariate (Hs and sigma0) analysis will be added in future release.

#### 1.3 Release notes for Sea State data version 1.1 (5th July 2019)

Main changes include:

- updated Hs corrections (intercalibration) for Cryosat-2, Jason-1 and AltiKa
- updated Hs uncertainties (for denoised Hs)
- fixed sum variables in L4 product (previous version should not be used)

## 2. Quick Start and FAQ

#### Where do I get the data?

Simple registration at <u>https://forms.ifremer.fr/lops-siam/access-to-esa-cci-sea-state-data/</u> gives immediate access to ftp account details. See section 3.4.

#### What are the data products?

There are three types of data product based on measurements of significant wave height from satellite altimeters. These are L2P, L3 and L4. See section 3.1.

#### What is the data format?

NetCDF4 Classic format. See section 3.3

#### What is the coverage?

The data are global, mostly up to max 81.5° latitude, with best coverage up to 66° latitude.

#### What is the time span?

Data span August 1991 to December 2018.

#### What is the spatial resolution?

The L2P and L3 products are along-track with narrow swath and resolution of 7km. The L4 gridded products have a spatial resolution of 1°.

#### I am interested in obtaining all the wave height measurements for a particular region and perhaps doing my own quality control, which product should I use? The L2P product contains the most information. See section 4.1.

# I am interested in obtaining all the best quality wave height measurements for a particular region and am not concerned about quality control or which satellite the measurements are from.

The L3 product contains all the significant wave height measurements that are considered good quality, merged from the different instruments. See section 4.2.

#### I am interested in obtaining quick statistics for large areas.

The L4 product contains a statistical summary of the wave height measurements at a spatial resolution of 1° and temporal resolution of 1 month. See section 4.3.

#### What about wave period and direction?

This information is derived from satellites carrying a Sythethic Aperture Radar instrument and will be included in future releases of the Sea State data.

#### Who do I contact for further information?

For general data enquiries contact the Ifremer data team: <u>cersat@ifremer.fr</u> For application and science issues contact Guillaume Dodet: <u>guillaume.dodet@ifremer.fr</u>

### **3. General Products Description**

#### **3.1 Products overview**

The first version (version 1) of CCI Sea State products is inherited from the GlobWave project building on experience and existing outputs. It extends and improves the GlobWave products which were a post-processing over existing L2 altimeter agency products with additional filtering, corrections and variables.

Three kinds of products are delivered:

- L2P : Along-track products separated per satellite and pass, including all measurements with flags, corrections and extra parameters from other sources. These are expert products with rich content and no data loss.
- L3 : Edited merged daily products retaining all valid and good quality measurements from all altimeters over one day (one daily file), with simplified content (only a few key parameters). This is close to what is delivered in NRT by CMEMS project.
- L4 : Gridded products averaging valid and good measurements from all available altimeters over a fixed resolution grid (1°x1°) on a monthly basis. These products are meant for statistics and visualization through CCI toolbox.

#### **3.2 Altimeter missions**

Data from the following satellite altimeter missions, spanning from 1991 to 2018, are included in the version 1 data:

| Mission        | Altimeter         | Selected band | Source product                                                              |
|----------------|-------------------|---------------|-----------------------------------------------------------------------------|
| GFO            | GFO-RA            | Ku            | GDR/POE<br>[NOAA]                                                           |
| TOPEX/Poseidon | TOPEX, POSEIDON-1 | Ku            | MGDR<br>[CNES]                                                              |
| ERS-1          | RA                | Ku            | OPR<br>[ESA/F-PAF]                                                          |
| ERS-2          | RA                | Ku            | OPR<br>[ESA/F-PAF]                                                          |
| Envisat        | RA-2              | Ku            | GDR v2.1<br>[ESA/F-PAC]                                                     |
| Jason-1        | POSEIDON-2        | Ku            | GDR version E<br>(MLE4 retracker for<br>SWH, MLE3 for<br>sigma0)<br>[Aviso] |
| Jason-2        | POSEIDON-3        | Ku            | GDR version D<br>(MLE4 retracker for                                        |

|           |             |    | SWH, MLE3 for<br>sigma0)<br>[Aviso]                                         |
|-----------|-------------|----|-----------------------------------------------------------------------------|
| Jason-3   | POSEIDON-3B | Ku | GDR version D<br>(MLE4 retracker for<br>SWH, MLE3 for<br>sigma0)<br>[Aviso] |
| Cryosat-2 | SIRAL       | Ku | IGDR<br>[NOAA]                                                              |
| SARAL     | AltiKa      | Ка | GDR<br>[Aviso]                                                              |

#### 3.3 Format

All products are in NetCDF4 Classic format. They comply to the CCI Data Standard 2.0 (See <u>http://cci.esa.int/working-groups</u>) and follow the CF 1.7 and ACDD conventions

The detailed format of each product is described in the following sections.

#### 3.4 Data access, organisation and file naming

The data can be obtained from Ifremer FTP server: ftp://eftp.ifremer.fr. The login and password can be obtained upon filling the registration form at :

#### https://forms.ifremer.fr/lops-siam/access-to-esa-cci-sea-state-data/

The common directory structure is based on CCI recommendations and is arranged as follows:

/products/<cci\_project>/<type>/<version>/<mission>/<date>/

Where:

- <cci\_project> : seastate
- <type> : will be different for each ECV, but needs to be defined, and consistent within an ECV, here I2 for along-track altimeter data, I3 for edited merged products and I4 for monthly averaged gridded products)
- <version> is the dataset version (currently 1.1)
- **<mission>** : satellite mission (for L2P products only)
- <date> : <year as YYYY>/<day in the year as DDD>

The file nomenclature is based on form 2 of CCI recommendations :

ESACCI-<CCI Project>-<Processing Level>-<Data Type>-<Product String>[-<Additional Segregator>]-<IndicativeDate>[<Indicative Time>]-fv<File version>.nc

Where:

- <CCI Project> : SEASTATE
- **<Processing Level>** : here L2P for along-track altimeter data, L3 for edited merged product and L4 for monthly averages
- **<Data Type>** : SWH for Significant Wave Height
- <Product String> :
- <Additional Segregator> :
- <Indicative Date>[<Indicative Time>]: The identifying date for this data set. Format
  is YYYYMMDDTHHMMSS, where YYYY is the four digit year, MM is the two digit
  month from 01 to 12 and DD is the two digit day of the month from 01 to 31. The date
  used should best represent the observation date for the data set. For along-track
  data it will be the time of the first measurement in the file.
- **<File version>** : File version number in the form n{1,}[.n{1,}] (That is 1 or more digits followed by optional . and another 1 or more digits.)

#### Examples:

L2P product: ESACCI-SEASTATE-L2P-SWH-JASON2-20170130T145103-fv01.nc

L3 product: ESACCI-SEASTATE-L3-SWH-MULTI\_1D-20170130-fv01.nc

L4 product: ESACCI-SEASTATE-L4-SWH-MULTI\_1M-201701-fv01.nc

## 4. Version 1 Dataset Content

#### 4.1 L2P

The L2P products are along-track files, usually corresponding to a satellite pass, processed from each mission data provider's L2 product (usually using the GDR type of product for altimeter for best quality). All measurements from the source product are kept but only a few variables from this product are copied into the L2P. Additional processing is performed, like quality control, adjustment of significant wave height and sigma0 to a common reference, uncertainty estimation, etc... and complementary variables are also computed or added from other sources. The content is fully consistent and standardized for each mission included in this dataset.

For altimeters, only the Ku band measurements are considered, when available (the only current exception being Saral for which only Ka band is provided).

This section describes in detail the specific content of the version 1 L2P for Sea State CCI.

#### 4.1.1 Content overview

The following table provides the list of variables included in the L2P product.

|                  | coordinate variables                                                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| time             | time (in seconds since 1985-01-01)                                                                                                                                                                                      |
| lat              | latitude                                                                                                                                                                                                                |
| lon              | longitude                                                                                                                                                                                                               |
|                  | instrumental variables for 1st band altimeter (usually Ku)                                                                                                                                                              |
| sigma0           | Ku band backscatter coefficient, as in source product from mission provider                                                                                                                                             |
| sigma0_adjusted  | Ku band adjusted backscatter coefficient. The adjustment is based<br>on Queffeulou et al.,<br>2017.[ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/wa<br>ves/documentation/altimeter_wave_merge11.4.pdf] |
| sigma0_rms       | RMS of the Ku band backscatter coefficient (from unadjusted 20 Hz measurements), as in source product from mission provider                                                                                             |
| sigma0_num_valid | number of valid points used to compute Ku band backscatter coefficient, as in source product from mission provider                                                                                                      |
|                  | environmental variables for 1st band altimeter (usually Ku)                                                                                                                                                             |
| swh              | significant wave height, taken from the source product from mission provider                                                                                                                                            |

| swh_adjusted                              | adjusted significant wave height. The adjustment is based on<br>Queffeulou et al., 2017<br>[ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/d<br>ocumentation/altimeter wave merge 11.4.pdf] for missions up<br>to Jason-2 and uses new estimates by CCI Sea State project for<br>the latest missions (Jason-3, Saral, CryoSat-2). |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| swh_denoised                              | EMD-filtered significant wave height, an adjusted and denoised<br>significant wave height estimated by CCI Sea State project and<br>based on Quilfen and Chapron (2019) [Quilfen, Y., and B. Chapron<br>(2019). On denoising satellite altimeter measurements for<br>geophysical signals analysis. Advances in Space Research.<br>Submitted]           |
| swh_noise                                 | High frequency noise on significant wave height, estimated by CCI<br>Sea State project and based on Quilfen and Chapron (2019)<br>[Quilfen, Y., and B. Chapron (2019). On denoising satellite<br>altimeter measurements for geophysical signals analysis.<br>Advances in Space Research. Submitted]                                                    |
| swh_quality                               | quality level if significant wave height measurements, as estimated<br>using the editing criteria from Queffeulou et al., 2017<br>[ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/d<br>ocumentation/altimeter_wave_merge11.4.pdf]                                                                                                 |
| swh_uncertainty                           | best estimate of significant wave height standard error, as estimated by CCI Sea State project for each mission                                                                                                                                                                                                                                        |
| swh_rms                                   | RMS of significant wave height (from unadjusted 20 Hz measurements), taken from the source product from mission provider                                                                                                                                                                                                                               |
| swh_num_valid                             | number of valid points used to compute significant wave height<br>(from unadjusted 20 Hz measurements), taken from the source<br>product from mission provider                                                                                                                                                                                         |
| swh_rejection_flag                        | flag specifying the editing criteria on which a measurement was rejected (meaning its quality level is not set to "good").                                                                                                                                                                                                                             |
|                                           | auxiliary variables                                                                                                                                                                                                                                                                                                                                    |
| auxiliary measurements                    |                                                                                                                                                                                                                                                                                                                                                        |
| corssh                                    | sea surface height, as taken from CCI Sea Level products                                                                                                                                                                                                                                                                                               |
| sea_ice_concentration                     | sea ice concentration, as taken from CCI Sea Ice products                                                                                                                                                                                                                                                                                              |
| total_column_liquid_water_co<br>ntent_rad | Total column cloud liquid water content from onboard radiometer, when available in source product.                                                                                                                                                                                                                                                     |
| topography                                |                                                                                                                                                                                                                                                                                                                                                        |
| bathymetry                                | ocean depth                                                                                                                                                                                                                                                                                                                                            |
| distance_to_coast                         | distance to nearest coast                                                                                                                                                                                                                                                                                                                              |

| model auxiliary data                  |                                                                     |
|---------------------------------------|---------------------------------------------------------------------|
| wind_speed_model_u                    | U component of the model wind vector, taken from ERA5 reanalysis    |
| wind_speed_model_v                    | V component of the model wind vector, taken from ERA5 reanalysis    |
| sea_surface_temperature               | sea surface temperature, taken from ERA5 reanalysis                 |
| surface_air_temperature               | surface air temperature, taken from ERA5 reanalysis                 |
| surface_air_pressure                  | surface air pressure, taken from ERA5 reanalysis                    |
| total_column_liquid_water_co<br>ntent | Total column cloud liquid water content, taken from ERA5 reanalysis |

#### 4.1.2 Processing details

#### 4.1.2.1 Variables from L2

Some variables are directly copied from the source L2 GDR product without any modification or editing, including:

- the coordinate variables: lat, lon, time
- the 1 Hz calculated significant wave height value in Ku band (Ka for AltiKa), and the number and RMS of the 20Hz measurements averaged to get this 1 Hz value
- the 1Hz radar backscatter (sigma0) in Ku band (Ka for AltiKa), and number of valid 20Hz measurements averaged to get this 1 Hz value

| time                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>int64 time(time) ;     time:_FillValue = 9.96921e+36f ;     time:long_name = "time of measurement" ;     time:standard_name = "time" ;     time:units = "seconds since 1985-01-01 00:00:00.0" ;     time:calendar = "gregorian" ;     time:axis = "T" ;     time:coverage_content_type = "coordinate" ;</pre> |
| Latitude [lat]                                                                                                                                                                                                                                                                                                     |
| double lat(time) :                                                                                                                                                                                                                                                                                                 |

```
lat:_FillValue =9.96921e+36f ;
lat:long_name = "latitude" ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;
lat:axis = "Y" ;
lat:valid_range = -90, 90 ;
lat:comment = "Positive latitude is North latitude, negative latitude is
South latitude" ;
```

|         | <pre>lat:coverage_content_type = "coordinate" ;</pre>                      |
|---------|----------------------------------------------------------------------------|
| Longitu | de [lon]                                                                   |
| double  | <pre>lon(time) ;</pre>                                                     |
|         | lon:_FillValue = 9.96921e+36f ;                                            |
|         | lon:long_name = "longitude" ;                                              |
|         | lon:standard_name = <mark>"longitude"</mark> ;                             |
|         | <pre>lon:units = "degrees_east" ;</pre>                                    |
|         | <pre>lon:axis = "X" ;</pre>                                                |
|         | lon:valid_range = -180, 180 ;                                              |
|         | <pre>lon:comment = "East longitude relative to Greenwich meridian" ;</pre> |
|         | lon:coverage_content_type = "coordinate" ;                                 |

```
Significant wave height [swh]
Hs as provided by the original data producer [no calibration, no editing].
```

```
double swh(time) ;
    swh:_FillValue = 9.96921e+36f ;
    swh:long_name = "Ku band significant wave height" ;
    swh:standard_name = "sea_surface_wave_significant_height" ;
    swh:units = "m" ;
    swh:ancillary_variables = "swh_quality rejection_flag" ;
    swh:coordinates = "time lon lat" ;
    swh:comment = "All instrumental corrections included. As available in
source GDR product and unedited" ;
    swh:band = "Ku" ;
    swh:coverage_content_type = "physicalMeasurement" ;
```

#### significant wave height rms [swh\_rms]

```
double swh_rms(time) ;
    swh_rms:_FillValue = 9.96921e+36f ;
    swh_rms:long_name = "RMS of the Ku band significant wave height (from 20
Hz measurements)" ;
    swh_rms:units = "m" ;
    swh_rms:coordinates = "time lon lat" ;
    swh_rms:band = "Ku" ;
    swh_rms:coverage_content_type = "auxiliaryInformation" ;
```

number of valid points used to compute 1st band significant wave height [swh\_num\_valid]

```
byte swh_num_valid(time) ;
    swh_num_valid:_FillValue = 127b ;
    swh_num_valid:long_name = "number of 20 Hz valid points used to compute
Ku band significant wave height" ;
    swh_num_valid:units = "1" ;
    swh_num_valid:coordinates = "time lon lat" ;
    swh_num_valid:coverage_content_type = "auxiliaryInformation" ;
```

#### sigma0 [sigma0]

```
double sigma0(time) ;
    sigma0:_FillValue = 9.96921e+36f ;
    sigma0:long_name = "Ku band backscatter coefficient" ;
    sigma0:band = "Ku" ;
    sigma0:units = "dB" ;
    sigma0:quality_flag = "sigma0_quality" ;
    sigma0:coordinates = "time lon lat" ;
    sigma0:comment = "All instrumental corrections included. Unadjusted" ;
    sigma0:coverage_content_type = "physicalMeasurement" ;
```

```
sigma0 RMS [sigma0_rms]
```

```
double sigma0_rms(time) ;
    sigma0_rms:_FillValue =9.96921e+36f ;
    sigma0_rms:long_name = "RMS of the Ku band backscatter coefficient" ;
    sigma0_rms:band = "Ku" ;
    sigma0_rms:units = "dB" ;
    sigma0_rms:coordinates = "time lon lat" ;
    sigma0_rms:coverage_content_type = "auxiliaryInformation" ;
```

| number of valid points used to compute backscatter coefficient [sigma0_num_valid] | l             |
|-----------------------------------------------------------------------------------|---------------|
| <pre>byte sigma0_num_valid(time) ;</pre>                                          |               |
| <pre>sigma0_num_valid:_FillValue = 127b ;</pre>                                   |               |
| <pre>sigma0_num_valid:long_name = "number of valid points used</pre>              | to compute Ku |
| <pre>band backscatter coefficient" ;</pre>                                        |               |
| <pre>sigma0_num_valid:band = "Ku" ;</pre>                                         |               |
| <pre>sigma0_num_valid:units = "1" ;</pre>                                         |               |
| <pre>sigma0_num_valid:valid_range = 0b, 10b ;</pre>                               |               |
| <pre>sigma0_num_valid:coordinates = "time lon lat" ;</pre>                        |               |
| <pre>sigma0_rms:coverage_content_type = "auxiliaryInformation"</pre>              | ;             |

#### 4.1.2.2 SWH quality level and rejection flags

Quality control of individual altimeter measurements is undertaken with checks on instrument flags and ancillary variables. As a result, the SWH comes with a quality level provided in the *swh\_quality* variable. Its meaning is defined as follows:

| value | meaning   | description                                                                                          |
|-------|-----------|------------------------------------------------------------------------------------------------------|
| 0     | undefined | the measurement value is not defined or relevant (missing value, etc), no quality check was applied. |
| 1     | bad       | the measurement was qualified as not usable after quality check.                                     |

| 2 | acceptable | the measurement may be usable for specific applications only<br>or the quality check could not fully assess if it is a bad or good<br>value (suspect). |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | good       | the measurement is usable.                                                                                                                             |

| significant wave height quality [swh_quality]                                  |
|--------------------------------------------------------------------------------|
| <pre>byte swh_quality(time) ;</pre>                                            |
| <pre>swh_quality:valid_min = 0b ;</pre>                                        |
| <pre>swh_quality:valid_max = 2b ;</pre>                                        |
| <pre>swh_quality:long_name = "quality of Ku band significant wave height</pre> |
| <pre>measurement" ;</pre>                                                      |
| <pre>swh_quality:flag_values = 0b, 1b, 2b, 3b ;</pre>                          |
| swh_quality:flag_meanings = "undefined bad acceptable good" ;                  |
| <pre>swh_quality:coverage_content_type = "qualityInformation" ;</pre>          |

When SWH measurements were rejected as **bad**, the reason (quality test) for which they were rejected is reported in the related *swh\_rejection\_flags* variable. The following table provides the meaning of each flag possibly raised. Depending on the mission, the criteria used to set these flags may be different and are detailed in the related section.

| flag              | criteria                                                                                                                                                                                                                                                                                                                                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| not_water         | the surface type is not water. It may be land, continental ice, We try to keep lake and inner seas measurements (when the discrimination is possible from the GDR information)                                                                                                                                                               |
| sea_ice           | the measurement has possible ice contamination. The sea ice fraction<br>is taken from an external source (such as the CCI Sea Ice microwave<br>based daily maps). Sea ice contamination is defined as areas where<br>the sea ice fraction is greater than a minimal threshold (corresponding<br>to 10% of ice in the current configuration). |
| swh_validity      | the SWH measurements were considered as invalid (for instance because out of the possible range).                                                                                                                                                                                                                                            |
| sigma0_validity   | the sigma0 measurements were considered as invalid for water surface type.                                                                                                                                                                                                                                                                   |
| waveform_validity | the measurements were considered as invalid as there are indications of unsuitable waveforms for a proper SWH calculation.                                                                                                                                                                                                                   |
| ssh_validity      | the SWH measurements were considered as invalid as there were issues on SSH which was considered as an indication of problematic quality for SWH too.                                                                                                                                                                                        |
| swh_rms_outlier   | the measurements were considered as invalid when the RMS of the SWH measurements used to estimate each 1 Hz SWH measurement was beyond the acceptable threshold for a given range of SWH.                                                                                                                                                    |

| swh_outlier | the measurements were considered as invalid when performing the SWH outlier test, based on the neighbouring measurements within a 100 km window. |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                  |

The editing criteria which leads to setting the SWH quality level and rejection flags are specific to each mission and are detailed in annex 1.

#### **Rejection flags [rejection\_flags]**

```
uint8 swh_rejection_flag(time) ;
    rejection_flag:long_name = "consolidated instrument and ice flags" ;
    rejection_flag:flag_masks = 0b, 1b, 2b, 4b, 8b, 16b, 32b, 64b ;
    rejection_flag:flag_meanings = "not_water sea_ice swh_validity
sigma0_validity waveform_validity ssh_validity swh_rms_outlier swh_outlier";
    rejection_flag:coverage_content_type = "qualityInformation" ;
```

#### 4.1.2.3 Adjusted SWH

The table below provides the calibration table for SWH used in CCI Sea State products. They are inherited from the work of Queffeulou (2017) within GlobWave. New calibration coefficients have been calculated by CCI Sea State project for the latest missions: Jason-3, AltiKa and Cryosat-2. These coefficients were computed from inter-calibration at crossover measurements, using Jason-2 as reference.

The calibration source and formulae is traced in the variable attributes of *swh\_adjusted* variable.

#### References:

Queffeulou, Pierre ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter\_w ave\_merge\_\_11.4.pdf, February 2017

Calibration derived from GlobWave error analysis [Ash E R & Carter D J T, September 2010, Satellite wave data quality report, GlobWave Deliverable D.16] http://globwave.ifremer.fr/download/GlobWave\_D.16\_SWDQR.pdf

| Satellite           | Adjustment formulae                  | Reference              |
|---------------------|--------------------------------------|------------------------|
| <b>ERS-1</b><br>OPR | swh_adjusted = 1.1259 x swh + 0.1854 | Queffeulou et al.,2017 |
| <b>ERS-2</b><br>OPR | swh_adjusted =1.0541 x swh + 0.0391  | Queffeulou et al.,2017 |

GlobWave Product User Guide Phase 3, Deliverable D.7

| <b>Envisat</b><br>Version 2.1<br>[2010] | [swh > 3.41m]<br>swh_adjusted = 1.0095 x swh + 0.0192                                                                                                                                                                                                                                                                                 | Queffeulou et al.,2017                       |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                         | [swh < 3.41m]<br>swh_adjusted = -0.021 x swh <sup>3</sup> + 0.1650 x swh <sup>2</sup> +<br>0.5693 x swh + 0.4358                                                                                                                                                                                                                      |                                              |
| <b>AltiKa</b><br>GDR                    | swh_adjusted = swh * 0.9881 + 0.0555                                                                                                                                                                                                                                                                                                  | Dodet et al.,2019<br>[CCI Sea State projet]  |
| <b>GFO</b><br>Version b                 | swh_adjusted = 1.0625 x swh + 0.0754                                                                                                                                                                                                                                                                                                  | Queffeulou et al.,2017                       |
| <b>Jason-1</b><br>Version E             | swh_adjusted = 1.0125 x swh + 0.0461                                                                                                                                                                                                                                                                                                  | Dodet et al.,2019<br>[CCI Sea State project] |
| <b>Jason-2</b><br>Version T &<br>D      | swh_adjusted = 1.0149 x swh + 0.0277                                                                                                                                                                                                                                                                                                  | Queffeulou et al.,2017                       |
| Jason-3                                 | swh_adjusted = swh * 1.0086 + 0.0503                                                                                                                                                                                                                                                                                                  | Dodet et al.,2019<br>[CCI Sea State projet]  |
| CryoSat-2                               | swh < 7.67:<br>swh_adjusted = $0.1446 + 0.8858$ swh + $0.0124$ swh <sup>2</sup><br>swh >= 7.67:<br>no adjustment applied.                                                                                                                                                                                                             | Dodet et al.,2019<br>[CCI Sea State projet]  |
| Торех                                   | Side A (up to cycle 235):<br>$swh_adjusted = 1.0539 \times swh - 0.0766 + dh$<br>with:<br>• $dh = 0$ for cycle < 98<br>• $dh = poly3(98) - poly3(cycle)$ for 98 <= cycle<br><= 235 with<br>• $a0 = 0.0864$<br>• $a1 = -6.0426 \times 10-4$<br>• $a2 = -7.7894 \times 10-6$<br>• $a3 = 6.9624 \times 10-8$<br>Side B (from cycle 226): | Queffeulou et al.,2017                       |
|                                         | Side B (from cycle 236):<br>swh_adjusted = 1.0237 x swh - 0.0476                                                                                                                                                                                                                                                                      |                                              |

#### adjusted significant wave height [swh\_adjusted]

```
double swh_adjusted(time) ;
    swh_adjusted:_FillValue = 9.96921e+36f ;
    swh_adjusted:long_name = "Ku band adjusted significant wave height" ;
    swh_adjusted:standard_name = "sea_surface_wave_significant_height" ;
    swh_adjusted:units = "m" ;
    swh_adjusted:calibration_formula = "1.0149*swh + 0.0277" ;
    swh_adjusted:calibration_reference = "Ash E R & Carter D J T, September
2010, Satellite wave data quality report, GlobWave Deliverable D.16" ;
    swh_adjusted:ancillary_variables = "swh_quality swh_uncertainty
rejection_flag" ;
    swh_adjusted:coordinates = "time lon lat" ;
    swh_adjusted:comment = "All instrumental corrections included. adjusted
and unedited" ;
    swh_adjusted:band = "Ku" ;
    swh_adjusted:coverage_content_type = "physicalMeasurement" ;
```

#### 4.1.2.4 SWH uncertainties

The uncertainties on adjusted significant wave height (*swh\_uncertainties* variable) have been estimated by the CCI Sea State project team using altimeter/buoy match-ups. The methodology used to estimate uncertainties is the one implemented during the Globwave project (Ash, 2012). The estimated uncertainty can be expressed as a function of significant wave height as follows:

for SWH > 1m: SWH uncertainty = 1.96 x (STD\_ERR\_P1 x swh + STD\_ERR\_P0)

for SWH <= 1m:

SWH uncertainty = 1.96 x (STD\_ERR\_P1 + STD\_ERR\_P0)

The STD\_ERR\_P0 and STD\_ERR\_P1 coefficients, estimated over the match-ups for each mission independently are listed in the following table:

| Mission | STD_ERR_P0 | STD_ERR_P1 |
|---------|------------|------------|
| ERS-1   | 0.123      | 0.004      |
| ERS-2   | 0.081      | 0.020      |
| TOPEX   | 0.023      | 0.034      |
| Envisat | 0.024      | 0.053      |
| Jason-1 | 0.038      | 0.027      |
| Jason-2 | 0.050      | 0.021      |

| Jason-3   | 0.042 | 0.020 |
|-----------|-------|-------|
| GFO       | 0.069 | 0.023 |
| SARAL     | 0.074 | 0.012 |
| Cryosat-2 | 0.035 | 0.021 |

#### References:

Ellis Ash, 2012. GlobWave Annual Quality Control Report, Phase 2, pp. 43.

| significant wave height uncertainty [swh_uncertainty]                            |
|----------------------------------------------------------------------------------|
|                                                                                  |
| <pre>double swh_uncertainty(time) ;</pre>                                        |
| <pre>swh_uncertainty:_FillValue = 9.96921e+36f ;</pre>                           |
| <pre>swh_uncertainty:long_name = "best estimate of significant wave height</pre> |
| standard error";                                                                 |
| <pre>swh_uncertainty:units = "m" ;</pre>                                         |
| <pre>swh_uncertainty:source = "GlobWave Wave Data Quality Report" ;</pre>        |
| <pre>swh_uncertainty:coordinates = "time lon lat" ;</pre>                        |
| <pre>swh_uncertainty:comment = "Standard error calculated from buoy</pre>        |
| colocations";                                                                    |
| <pre>swh_uncertainty:coverage_content_type = "qualityInformation" ;</pre>        |

#### 4.1.2.5 Denoised SWH

A non-parametric denoising method based on Empirical Mode Decomposition (EMD, Huang et al., 1998) and inspired by wavelet thresholding is applied to the parameter swh\_adjusted (see Kopsinis and McLaughlin, 2009, Quilfen et al., 2018 and Quilfen and Chapron, 2019ab). A detailed description of the method can be found in Quilfen and Chapron, 2019b.

#### References:

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454, 903–995. https://doi.org/10.1098/rspa.1998.0193

Kopsinis, Y., McLaughlin, S., 2009. Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding. IEEE Transactions on Signal Processing 57, 1351–1362. https://doi.org/10.1109/TSP.2009.2013885

Quilfen, Y., Yurovskaya, M., Chapron, B., Ardhuin, F., 2018. Storm waves focusing and steepening in the Agulhas current: Satellite observations and modeling. Remote Sensing Of Environment 216, 561–571. https://doi.org/10.1016/j.rse.2018.07.020

Quilfen, Y., and Chapron, B., 2019. Ocean Surface Wave-Current Signatures From Satellite Altimeter Measurements. Geophysical Research Letters 46, 253–261. https://doi.org/10.1029/2018GL081029

Quilfen, Y., and Chapron, B., 2019. On denoising satellite altimeter measurements for geophysical signals analysis. Advances in Space Research. Submitted

#### Denoised significant wave height [swh\_denoised]

```
double swh_denoisedd(time) ;
    swh_denoised:_FillValue = 9.96921e+36f ;
    swh_denoised:long_name = "Ku band denoised significant wave height" ;
    swh_denoised:standard_name = "sea_surface_wave_significant_height" ;
    swh_denoised:units = "m" ;
    swh_denoised:coordinates = "time lon lat" ;
    swh_denoised:comment = "All instrumental corrections included. adjusted,
    denoised with EMD and unedited" ;
    swh_denoised:band = "Ku" ;
    swh_denoised:coverage_content_type = "physicalMeasurement" ;
```

#### 4.1.2.6 Adjusted Sigma0

The next table gives details of the calibrations applied to the sigma0 measurements, as defined in Queffeulou et al., 2017. The content is subject to change with time.

A first calibration is obtained from information published by the agencies or by people involved in the monitoring of this measurements – sources are indicated for each altimeter.

A second calibration is obtained from comparison with the ENVISAT sigma0, which seems to be stable with time: for each altimeter, a bias was estimated relative to ENVISAT, comparing mean values of sigma0, over the global oceans, between 66.15° S and 66.15° N, and over the common time period with ENVISAT, for TOPEX, ERS-2, Jason-1 & 2 and GFO. ERS-1 was adjusted indirectly by a first comparison with ERS-2, itself adjusted relatively to ENVISAT.

These two calibration values are applied to the GDR sigma0, resulting in the adjusted sigma0 parameter given in the data set.

#### References:

Queffeulou et al.,2017 [ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter\_w ave\_merge\_\_9.0\_\_annexe\_II.pdf]

| satellite Sigma0 calibration Comment |
|--------------------------------------|
|--------------------------------------|

| ERS-1                           | +0.0976 dB<br>+0.0465 + 0.0511 [ENVISAT]                                                                                                                                                                                                                                                                                                                                         | adjusted sigma0 Ku-band and<br>adjusted wind speed set to<br>NaN before<br>01-Aug-1991 02:15:18                                                                                                                                                                                                                         |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERS-2                           | +0.15 dB from January 16 to<br>February 7, 2000<br>+0.35 dB from February 10 to<br>March 2, 2000<br>+0.25 dB from 3 Mar 2000 to 7<br>Oct 2000<br>+0.35 dB from 8 Oct 2000<br>(anomaly occurs) to 5 Feb<br>2001<br>+0.45 dB from 6 Feb 2001<br>(Extra backup mode starts) to<br>29 Apr 2001<br>+0.25 dB since 30 Apr 2001<br>(Zero Gyro mode implemented)<br>+0.0511 dB [ENVISAT] | calibrations were obtained from<br>Dorandeu et al. 2000, and<br>Scharroo, personal<br>communication.<br>Extra Backup Mode (extended<br>further): do not use sigma0<br>ERS-2 from 17 Jan 2001 to 31<br>March 2001, included;<br>calibrated sigma0 Ku-band and<br>adjusted wind speed set to<br>NaN over this time period |
| Envisat                         | +0. dB [ENVISAT]                                                                                                                                                                                                                                                                                                                                                                 | Version 2.1 [2010]                                                                                                                                                                                                                                                                                                      |
| AltiKa                          | TBD                                                                                                                                                                                                                                                                                                                                                                              | Not estimated                                                                                                                                                                                                                                                                                                           |
| GFO                             | +0.32 dB from 11 January<br>2000 to 6 December 2000<br>(included)<br>-0.4322 dB [ENVISAT]                                                                                                                                                                                                                                                                                        | Do not use sigma0 GFO after 2<br>Aug 2006. Calibrated sigma0<br>Ku-band and adjusted wind<br>speed set<br>to NaN over this time period.                                                                                                                                                                                 |
| <b>Jason-2</b><br>Version T & D | -2.7668]<br>+ 0.2024 (version D) dB<br>[ENVISAT                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                         |
| Jason-3                         | TBD                                                                                                                                                                                                                                                                                                                                                                              | Not estimated                                                                                                                                                                                                                                                                                                           |
| CryoSat-2                       | none                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                         |

| <b>Topex-Poseidon/Topex</b><br>Side A (up to cycle 235): | correction as a function of cycle number: for side-A: | Do not use the 10 first TOPEX cycles, date lower than or equal to 31 Dec 1992. |
|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                          | for side-A:                                           |                                                                                |

|                          | <ul> <li>table 2-b for cycle<br/>numbers lower than<br/>133</li> <li>table 2-a for cycle 133<br/>and greater, from<br/>Hayne and Hancock,<br/>July 1999.</li> <li>-0.4739 dB [ENVISAT]</li> </ul> | Do not use TOPEX<br>miss-pointing cycles 433-437<br>included, i.e. data between<br>June 15, 2004 and<br>August 2, 2004, included.<br>Calibrated sigma0 Ku-band<br>and adjusted wind speed set to<br>NaN over this time periods. |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Side B (from cycle 236): | for side-B :<br>Table G-1 of Lockwood et al.,<br>July 2006.<br>-0.4739 dB [ENVISAT]                                                                                                               |                                                                                                                                                                                                                                 |

```
adjusted sigma0 [sigma0]
double sigma0_adjusted(time) ;
    sigma0_adjusted:_FillValue = 9.96921e+36f ;
    sigma0_adjusted:long_name = "Ku band adjusted backscatter coefficient" ;
    sigma0_adjusted:band = "Ku" ;
    sigma0_adjusted:units = "dB" ;
    sigma0_adjusted:quality_flag = "sigma0_quality" ;
    sigma0_adjusted:coordinates = "time lon lat" ;
    sigma0_adjusted:comment = "All instrumental corrections included.
Adjusted." ;
    sigma0_adjusted:coverage_content_type = "physicalMeasurement" ;
```

#### 4.1.2.7 Wind speed

The provided altimeter wind speed is taken from the source product without any adjustment or correction.

#### 4.1.2.8 Model data

The selected source for model is the ERA5 reanalysis (<u>https://climate.copernicus.eu/climate-reanalysis</u>) : currently it is only filled in from 2000 to 2018, but it is being extended backward in a later version. The parameters currently extracted are:

- U and V wind components at 10m
- air temperature at 2m
- sea level surface pressure

Sea surface temperature and total liquid water content are currently missing and will be added in a later version.

#### Model wind speed zonal component [wind\_speed\_model\_u]

```
double wind_speed_model_u(time) ;
    wind_speed_model_u:_FillValue = 9.96921e+36f ;
    wind_speed_model_u:long_name = "U component of the model wind vector" ;
    wind_speed_model_u:standard_name = "eastward_wind" ;
    wind_speed_model_u:units = "m s-1" ;
    wind_speed_model_u:source = "atmospheric model ERA5" ;
    wind_speed_model_u:institution = "ECMWF" ;
    wind_speed_model_u:coordinates = "time lon lat" ;
    wind_speed_model_u:coverage_content_type = "modelResult" ;
```

#### Model wind speed meridional component [wind\_speed\_model\_v]

```
double wind_speed_model_v(time) ;
    wind_speed_model_v:_FillValue = 9.96921e+36f ;
    wind_speed_model_v:long_name = "V component of the model wind vector" ;
    wind_speed_model_v:standard_name = "northward_wind" ;
    wind_speed_model_v:units = "m s-1" ;
    wind_speed_model_v:source = "atmospheric model ERA5" ;
    wind_speed_model_v:institution = "ECMWF" ;
    wind_speed_model_v:coverage_content_type = "modelResult" ;
```

#### Sea surface temperature [sea\_surface\_temperature]

```
double sea_surface_temperature(time) ;
    sea_surface_temperature:_FillValue = 32767s ;
    sea_surface_temperature:long_name = "sea_surface_temperature" ;
    sea_surface_temperature:standard_name = "sea_surface_temperature" ;
    sea_surface_temperature:units = "K" ;
    sea_surface_temperature:source = "atmospheric model ERA5" ;
    sea_surface_temperature:institution = "ECMWF" ;
    sea_surface_temperature:coordinates = "time lon lat" ;
    sea_surface_temperature:coverage content type = "modelResult" ;
```

#### Surface air temperature [surface\_air\_temperature]

```
double surface_air_temperature(time) ;
    surface_air_temperature:_FillValue = 32767s ;
    surface_air_temperature:long_name = "surface_air_temperature";
    surface_air_temperature:standard_name = "air_temperature";
    surface_air_temperature:units = "K";
    surface_air_temperature:source = "atmospheric model ERA5";
    surface_air_temperature:institution = "ECMWF";
    surface_air_temperature:coordinates = "time lon lat";
    surface_air_temperature:coverage_content_type = "modelResult";
```

Surface air pressure [surface\_air\_pressure]

double surface\_air\_pressure(time) ;
 surface\_air\_pressure:\_FillValue = 32767s ;
 surface\_air\_pressure:long\_name = "surface air pressure" ;
 surface\_air\_pressure:standard\_name = "air\_pressure\_at\_mean\_sea\_level" ;
 surface\_air\_pressure:units = "Pa" ;
 surface\_air\_pressure:source = "atmospheric model ERA5" ;
 surface\_air\_pressure:institution = "ECMWF" ;
 surface\_air\_pressure:coordinates = "time lon lat" ;
 wind\_speed\_model\_u:coverage\_content\_type = "modelResult" ;

#### Total column liquid water [total\_column\_liquid\_water\_content]

```
double total_liquid_water_content(time) ;
    total_liquid_water_content:_FillValue = 32767s ;
    total_liquid_water_content:long_name = "total column liquid water" ;
    total_liquid_water_content:standard_name =
    "atmosphere_cloud_liquid_water_content" ;
    total_liquid_water_content:units = "kg m-2" ;
    total_liquid_water_content:source = "atmospheric model ERA5" ;
    total_liquid_water_content:institution = "ECMWF" ;
    total_liquid_water_content:coordinates = "time lon lat" ;
    total_liquid_water_content:coverage_content_type = "modelResult" ;
```

#### 4.1.2.9 Sea Surface Height

The sea surface height is taken from the ESA CCI Sea Level datasets, available for ERS-1, ERS-2, Envisat, GFO, Topex-Poseidon, Jason-1, Jason-2, CryoSat-2 and Altika, up to February 2016. As a consequence:

- no sea level information is provided for the latest altimeters: Jason-3, Sentinel-3A,...
- no sea level information is filled in beyond February 2016 for any altimeter

The CCI sea level dataset is strongly edited, retaining only the good quality measurements: we use \_FillValue wherever no sea level measurements is provided in the CCI Sea Level dataset or could be matched to the L2P measurements for some reason.

#### 4.1.2.10 Sea ice concentration

Note that in this editing, we use an external sea ice concentration product to discard possibly ice contaminated pixels. Because no products provides a complete temporal coverage (missed acquisitions, discontinuities between different microwave radiometer missions, infrequent updates of some datasets), we had to use three different sources, which are in order of priority:

- 1. CCI Sea Ice Concentration from AMSR, v2.1 (2002-2017)
- 2. CCI Sea ice Concentration from SSMI, v1.11 (-2017)
- 3. OSI SAF Sea Ice Concentration reprocessing v1p2 (2017-2019)
- 4. OSI SAF Sea Ice Concentration reprocessing v2p0 (1979-2015)

For each source, we use the closest in time concentration map, up to three days old, before switching to the next source in line.

#### 4.1.2.11 Bathymetry

The same bathymetry source was used for all mission to get the ocean sea floor depth. We selected the 30 second arc General Bathymetric Chart of the Oceans (GEBCO), 2014 [doi:10.1002/2015EA000107], available at:

https://www.gebco.net/data\_and\_products/gridded\_bathymetry\_data/gebco\_30\_second\_grid

#### Ocean depth [bathymetry]

```
double bathymetry(time) ;
    bathymetry:_FillValue = 32767s ;
    bathymetry:long_name = "ocean depth" ;
    bathymetry:units = "m" ;
    bathymetry:source = "The GEBCO_2014 Grid, version 20150318,
    www.gebco.net, doi:10.1002/2015EA000107" ;
    bathymetry:institution = "IOC/IHO" ;
    bathymetry:coordinates = "time lon lat" ;
    bathymetry:coverage_content_type = "auxiliaryInformation" ;
```

#### 4.1.2.12 Distance to coast

The distance to the nearest coastline for each ocean measurement was extracted from the Distance to Nearest Coastline grid at 0.01 degree resolution, provided by the NASA Goddard Space Flight Center (GSFC) Ocean Color Group and available at:

http://www.pacioos.hawaii.edu/metadata/dist2coast\_1deg.html

```
Distance to nearest coast [distance_to_coast]
```

```
double distance_to_coast(time) ;
    distance_to_coast:_FillValue = 1.e+20 ;
    distance_to_coast:long_name = "distance to nearest coast" ;
    distance_to_coast:authority = "CF-1.7" ;
    distance_to_coast:units = "m" ;
    distance_to_coast:source = "Distance to Nearest Coastline: 0.01-Degree
Grid, by NASA Goddard Space Flight Center (GSFC) Ocean Color Group" ;
    distance_to_coast:coverage_content_type = "auxiliaryInformation" ;
    distance_to_coast:coordinates = "time lon lat" ;
```

#### 4.1.3 Global attributes

| Global Attribute | Example content |
|------------------|-----------------|
|                  |                 |

| title                    | ESA CCI Sea State L2P derived from Jason-2 GDR                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| institution              | Institut Francais de Recherche pour l'Exploitation de la mer /<br>CERSAT, European Space Agency                                                                                         |
| institution_abbreviation | Ifremer/Cersat, ESA                                                                                                                                                                     |
| source                   | CCI Sea State Jason-2 GDR to L2P Processor 1.0                                                                                                                                          |
| history                  | 2018-06-18T14:17:10 UTC Creation from processor version v1.0                                                                                                                            |
| references               | http://cci.esa.int/seastate                                                                                                                                                             |
| Conventions              | CF-1.6, ACDD-1.3, ISO 8601                                                                                                                                                              |
| product_version          | 1.0                                                                                                                                                                                     |
| summary                  | This dataset contains along-track significant wave height<br>measurements from Jason-2 altimeter, cross-calibrated with other<br>altimetry missions and reference in situ measurements. |
| keywords                 | satellite,observation,ocean                                                                                                                                                             |
| id                       | ESACCI-SEASTATE-L2P-SWH-JASON2-20170130T145103-fv01.<br>nc                                                                                                                              |
| naming authority         | fr.ifremer.cersat                                                                                                                                                                       |
| keywords_vocabulary      | NASA Global Change Master Directory (GCMD) Science Keywords                                                                                                                             |
| cdm_data_type            | trajectory                                                                                                                                                                              |
| featureType              | trajectory                                                                                                                                                                              |
| comment                  | These data were produced at ESACCI as part of the ESA SST CCI project.                                                                                                                  |
| date_created             | 20120131T120000Z                                                                                                                                                                        |
| date_modified            | 20160111T181628Z                                                                                                                                                                        |
| creator_name             | Ifremer / Cersat                                                                                                                                                                        |
| creator_url              | http://cersat.ifremer.fr                                                                                                                                                                |
| creator_email            | cersat@ifremer.fr                                                                                                                                                                       |
| creator_institution      | Ifremer / Cersat                                                                                                                                                                        |
| project                  | Climate Change Initiative - European Space Agency                                                                                                                                       |
| geospatial_lat_min       | -80                                                                                                                                                                                     |
| geospatial_lat_max       | 80                                                                                                                                                                                      |

| geospatial_lat_units                                                                                                                                                                                       | degrees_north                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| geospatial_lon_min                                                                                                                                                                                         | -180                                                                                                                                                                                                                                                                                                                                                                                                          |
| geospatial_lon_max                                                                                                                                                                                         | 180                                                                                                                                                                                                                                                                                                                                                                                                           |
| geospatial_lon_units                                                                                                                                                                                       | degrees_east                                                                                                                                                                                                                                                                                                                                                                                                  |
| time_coverage_start                                                                                                                                                                                        | 20170130T145103Z                                                                                                                                                                                                                                                                                                                                                                                              |
| time_coverage_end                                                                                                                                                                                          | 20170130T154708Z                                                                                                                                                                                                                                                                                                                                                                                              |
| time_coverage_duration                                                                                                                                                                                     | PT1H2M5S                                                                                                                                                                                                                                                                                                                                                                                                      |
| time_coverage_resolution                                                                                                                                                                                   | PT1S                                                                                                                                                                                                                                                                                                                                                                                                          |
| geospatial_bounds                                                                                                                                                                                          | POLYGON ((-18090., -180. 90., 180. 90., 18090., -18090.))                                                                                                                                                                                                                                                                                                                                                     |
| standard_name_vocabulary                                                                                                                                                                                   | NetCDF Climate and Forecast (CF) Metadata Convention version 1.6                                                                                                                                                                                                                                                                                                                                              |
| license                                                                                                                                                                                                    | ESA CCI Data Policy: free and open access                                                                                                                                                                                                                                                                                                                                                                     |
| platform                                                                                                                                                                                                   | Jason-2                                                                                                                                                                                                                                                                                                                                                                                                       |
| platform_vocabulary                                                                                                                                                                                        | CEOS                                                                                                                                                                                                                                                                                                                                                                                                          |
| sensor                                                                                                                                                                                                     | POSEIDON-3                                                                                                                                                                                                                                                                                                                                                                                                    |
| instrument                                                                                                                                                                                                 | POSEIDON-3                                                                                                                                                                                                                                                                                                                                                                                                    |
| instrument_vocabulary                                                                                                                                                                                      | CEOS                                                                                                                                                                                                                                                                                                                                                                                                          |
| an attal man shatters                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |
| spatial_resolution                                                                                                                                                                                         | 11.2 KM X 5.1 KM                                                                                                                                                                                                                                                                                                                                                                                              |
| spatial_resolution                                                                                                                                                                                         | 316                                                                                                                                                                                                                                                                                                                                                                                                           |
| spatial_resolution<br>cycle_number<br>pass_number                                                                                                                                                          | 11.2 km x 5.1 km       316       157                                                                                                                                                                                                                                                                                                                                                                          |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time                                                                                                                                 | 11.2 km x 5.1 km       316       157       2017-01-30T15:19:10.105000 UTC                                                                                                                                                                                                                                                                                                                                     |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time<br>equator_crossing_longitude                                                                                                   | 11.2 km x 5.1 km         316         157         2017-01-30T15:19:10.105000 UTC         47.48                                                                                                                                                                                                                                                                                                                 |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time<br>equator_crossing_longitude<br>netcdf_version_id                                                                              | 11.2 km x 5.1 km         316         157         2017-01-30T15:19:10.105000 UTC         47.48         4.3.0 of Jul 8 2013 12:17:12 \$                                                                                                                                                                                                                                                                         |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time<br>equator_crossing_longitude<br>netcdf_version_id<br>metadata_link                                                             | 11.2 km x 5.1 km         316         157         2017-01-30T15:19:10.105000 UTC         47.48         4.3.0 of Jul 8 2013 12:17:12 \$                                                                                                                                                                                                                                                                         |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time<br>equator_crossing_longitude<br>netcdf_version_id<br>metadata_link<br>acknowledgement                                          | 11.2 km x 5.1 km         316         157         2017-01-30T15:19:10.105000 UTC         47.48         4.3.0 of Jul 8 2013 12:17:12 \$         Please acknowledge the use of these data with the following statement: these data were obtained from the ESA CCI Sea State project                                                                                                                              |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time<br>equator_crossing_longitude<br>netcdf_version_id<br>metadata_link<br>acknowledgement<br>format_version                        | 11.2 km x 5.1 km         316         157         2017-01-30T15:19:10.105000 UTC         47.48         4.3.0 of Jul 8 2013 12:17:12 \$         Please acknowledge the use of these data with the following statement: these data were obtained from the ESA CCI Sea State project         Data Standards Requirements for CCI Data Producers, v2.0, 17 Septembre 2018                                          |
| spatial_resolution<br>cycle_number<br>pass_number<br>equator_crossing_time<br>equator_crossing_longitude<br>netcdf_version_id<br>metadata_link<br>acknowledgement<br>format_version<br>processing_software | 11.2 km x 5.1 km         316         157         2017-01-30T15:19:10.105000 UTC         47.48         4.3.0 of Jul 8 2013 12:17:12 \$         Please acknowledge the use of these data with the following statement: these data were obtained from the ESA CCI Sea State project         Data Standards Requirements for CCI Data Producers, v2.0, 17 Septembre 2018         Jason-2 GDR to L2P Processor 1.0 |

| uuid                       | 57822220-4F3C-11E8-B351-0024E836CC1A |
|----------------------------|--------------------------------------|
| publisher_name             | Ifremer/Cersat                       |
| publisher_url              | cersat.ifremer.fr                    |
| publisher_email            | cersat@ifremer.fr                    |
| publisher_institution      | Ifremer/Cersat                       |
| scientific_support_contact | Guillaume.Dodet@ifremer.fr           |
| technical_support_contact  | cersat@ifremer.fr                    |

#### 4.1.4 Planned improvements

New releases may be published in the coming months, including the following improvements:

- extending the time series beyond 2018
- adding SRAL altimeters onboard Sentinel-3A & 3B
- using newest source L2 for some missions such as the Envisat v3.0 dataset, ERS-1 and ERS-2 REAPER datasets
- completing the ERA5 model variables before 2000 and adding sea surface temperature and total liquid water content
- improving the editing of SWH data, in particular over sea ice areas, slicks and strong wind areas
- adding the mean square slope
- revising the adjustment of sigma0
- adding an adjusted altimeter wind speed

#### 4.2 Version 1 dataset: L3

This section describes the specific variables contained in the version 1 L3 for Sea State CCI. A full description of the coordinates and variables is given in Annex A.

|                      | coordinate variables                                                                 |
|----------------------|--------------------------------------------------------------------------------------|
| time                 | time (in seconds since 1985-01-01)                                                   |
| lat                  | latitude                                                                             |
| lon                  | longitude                                                                            |
|                      | instrumental variables for 1st band altimeter (usually Ku)                           |
| sigma0               | Ku band backscatter coefficient (raw)                                                |
| sigma0_calibrated    | Ku band calibrated backscatter coefficient                                           |
|                      | environmental variables for 1st band altimeter (usually Ku)                          |
| swh                  | significant wave height (as available in source GDR product)                         |
| swh_adjusted         | significant wave height (adjusted)                                                   |
| swh_denoised         | significant wave height (adjusted and denoised)                                      |
| swh_uncertainty      | best estimate of significant wave height standard error                              |
|                      | auxiliary variables                                                                  |
| topography           |                                                                                      |
| bathymetry           | ocean depth                                                                          |
| distance_to_coast    | distance to nearest coast                                                            |
|                      | source                                                                               |
| satellite            | identifier of the satellite from which the measurement comes from                    |
| relative_pass_number | relative pass number in the satellite history, from which the measurement comes from |
| cycle                | cycle in the satellite history,<br>from which the measurement comes from             |

#### 4.3 Version 1 dataset: L4

This section describes the specific variables contained in the version 1 L4 for Sea State CCI. L4 is a monthly gridded product with a spatial resolution of 1°. Statistics are based on the median SWH value from transects over each 1° square, provided there are at least 5 valid measurements (at 1Hz) along the transect.

|                     | coordinate variables                                              |
|---------------------|-------------------------------------------------------------------|
| time                | time (in seconds since 1985-01-01)                                |
| lat                 | latitude                                                          |
| lon                 | longitude                                                         |
|                     | environmental variables for 1st band altimeter (usually Ku)       |
| swh_mean            | mean of median significant wave height values                     |
| swh_rms             | rms of median significant wave height values                      |
| swh_num             | number of median significant wave height values                   |
| swh_sum             | total of median significant wave height values                    |
| swh_squared_sum     | total of median significant wave height squared values            |
| swh_log_sum         | total of median significant wave height log values                |
| swh_log_squared_sum | total of median significant wave height log squared values        |
| swh_num_gt0050      | number of median significant wave height values greater than 0.5m |
| swh_num_gt0100      | number of median significant wave height values greater than 1.0m |
| swh_num_gt0150      | number of median significant wave height values greater than 1.5m |
| swh_num_gt0200      | number of median significant wave height values greater than 2.0m |
| swh_num_gt0250      | number of median significant wave height values greater than 2.5m |
| swh_num_gt0300      | number of median significant wave height values greater than 3.0m |
| swh_num_gt0350      | number of median significant wave height values greater than 3.5m |
| swh_num_gt0400      | number of median significant wave height values greater than 4.0m |

| swh_num_gt0500 | number of median significant wave height values greater than 5.0m  |
|----------------|--------------------------------------------------------------------|
| swh_num_gt0600 | number of median significant wave height values greater than 6.0m  |
| swh_num_gt0800 | number of median significant wave height values greater than 8.0m  |
| swh_num_gt1000 | number of median significant wave height values greater than 10.0m |
| swh_max        | maximum median significant wave height value                       |

## 5. Differences with GlobWave L2P products

The following table summarizes the differences between GlobWave and CCI L2P products : in black: common variables between GlobWave and CCI, in red: removed wrt GlobWave, in green: additions to GlobWave.

|                         | coordinate variables                                                                           |
|-------------------------|------------------------------------------------------------------------------------------------|
| time                    | time (in seconds since 1985-01-01)                                                             |
| lat                     | latitude                                                                                       |
| lon                     | longitude                                                                                      |
|                         | sensor variables for each altimeter band                                                       |
| 1st band backscatter    |                                                                                                |
| sigma0                  | Ku band backscatter coefficient (1st band)                                                     |
| sigma0_rms              | RMS of the Ku band backscatter coefficient                                                     |
| sigma0_num_valid        | number of valid points used to compute Ku band backscatter coefficient                         |
| mss                     | Mean square slope                                                                              |
|                         |                                                                                                |
| 2nd band backscatter    |                                                                                                |
| sigma0_2nd              | C-band backscatter coefficient (2nd band)                                                      |
| sigma0_rms_2nd          | RMS of the C band backscatter coefficient                                                      |
| sigma0_num_valid_2nd    | number of valid points used to compute C band backscatter coefficient                          |
|                         | environmental variables for each altimeter band<br>(usually: 1st band = Ku, 2nd band = C or S) |
| 1st band wave variables |                                                                                                |
| swh                     | significant wave height (1st band, uncalibrated)                                               |
| swh_corrected           | significant wave height (1st band, calibrated)                                                 |
| swh_denoised            | significant wave height (1st band, calibrated, denoised)                                       |
| swh_quality             | quality level significant wave height measurement (1st band)                                   |
| swh_standard_error      | best estimate of significant wave height standard error                                        |

| swh_rms                       | RMS of significant wave height (1st band)                                 |
|-------------------------------|---------------------------------------------------------------------------|
| swh_num_valid                 | number of valid points used to compute significant wave height (1st band) |
| swh_rejection_flags           | consolidated instrument and ice flags                                     |
|                               |                                                                           |
| 2nd band wave variables       |                                                                           |
| swh_2nd                       | corrected significant wave height (2ns band, uncalibrated)                |
| swh_rms_2nd                   | RMS of significant wave height (2nd band)                                 |
| swh_num_valid_2nd             | number of valid points used to compute significant wave height (2nd band) |
| swh_2nd_quality               | quality level significant wave height measurement (2nd band)              |
|                               | auxiliary variables                                                       |
| instrument/platform           |                                                                           |
| off_nadir_angle_wf            | square of the off nadir angle computed from waveforms                     |
| off_nadir_angle_pf            | Off nadir angle from platform                                             |
|                               |                                                                           |
| Auxiliary measurements        |                                                                           |
| wind_speed_alt                | altimeter wind speed                                                      |
| wind_speed_alt_calibra<br>ted | Calibrated Altimeter wind speed.                                          |
| wind_speed_rad                | radiometer wind speed                                                     |
| sea_surface_height            | sea level                                                                 |
| range_rms                     | RMS of the Ku band range                                                  |
| range_rms_2nd                 | RMS of the C band range                                                   |
|                               |                                                                           |
| topography                    |                                                                           |
| bathymetry                    | ocean depth                                                               |
| distance_to_coast             | distance to nearest coast                                                 |
|                               |                                                                           |
| Model auxiliary data          |                                                                           |

| wind_speed_model_u                    | U component of the model wind vector    |
|---------------------------------------|-----------------------------------------|
| wind_speed_model_v                    | V component of the model wind vector    |
| sea_surface_temperature               | sea surface temperature                 |
| surface_air_temperature               | surface air temperature                 |
| surface_air_temperature               | surface air pressure                    |
| total_column_liquid_water_co<br>ntent | Total column cloud liquid water content |

#### 6. L2P editing criteria

Editing is applied to original L2 data in order to qualify measurements (in L2P) and retain only good measurements (in L3). The used criteria are specific to each mission and are detailed in the following sections for each of them.

#### 6.1 Topex

#### 6.1.1 sanity checks

Measurements are classified as **undefined** if swh or swh rms (Ku band) was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR geo\_bad1 bit1 = 0 [land]
- GDR geo\_bad1 bit3 = 0 [ice]
- GDR swh\_ku > 0
- GDR swh\_numval\_ku = 8
- GDR agc\_numval = 16

#### 6.1.2 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

#### 6.1.3 sea-ice test

The sea ice fraction used here comes from the products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.1.4 SWH rejection flag

The SWH rejection flags are set as follows:

| flag      | criteria for which the flag is set                          |
|-----------|-------------------------------------------------------------|
| not_water | GDR geo_bad1 bit1 = 1 [land]<br>GDR geo_bad1 bit3 = 1 [ice] |
| sea_ice   | CCI sea ice fraction >= 0.1                                 |

| swh_validity      | GDR swh_ku <= 0 or undefined                                        |
|-------------------|---------------------------------------------------------------------|
| sigma0_validity   | GDR sigma0_ku <= 0 or undefined<br>GDR agc_numval = 16              |
| ssh_validity      | unused (always 0)                                                   |
| waveform_validity | GDR swh_numval_ku != 8                                              |
| swh_rms_outlier   | GDR swh_rms_ku <= 0 or undefined                                    |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test |

#### 6.2 ERS-1

#### 6.2.1 sanity checks

Measurements are classified as **undefined** if swh and swh rms (Ku band) was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR mcd bit0 = 0 [record is invalid]
- GDR mcd bit7 = 0 [swh quality]
- GDR mcd bit8 = 0 [sigma0 quality]
- GDR swh\_numval\_ku > 16
- GDR sigma0\_ku defined
- GDR swh\_ku > 0

#### 6.2.2 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

#### 6.2.3 sea-ice test

The sea ice fraction used here comes from the products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.2.4 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                   |
|-------------------|----------------------------------------------------------------------|
| not_water         | GDR mcd bit0 = 1 [invalid product]                                   |
| sea_ice           | CCI sea ice fraction >= 0.1                                          |
| swh_validity      | GDR swh_ku <= 0 or undefined<br>GDR mcd bit7 = 1 [swh quality]       |
| sigma0_validity   | GDR sigma0_ku <= 0 or undefined<br>GDR mcd bit8 = 1 [sigma0 quality] |
| ssh_validity      | unused (always 0)                                                    |
| waveform_validity | GDR swh_numval_ku <= 16                                              |
| swh_rms_outlier   | GDR swh_rms_ku <= 0 or undefined                                     |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test  |

#### 6.3 ERS-2

#### 6.3.1 sanity checks

Measurements are classified as **undefined** if swh and swh rms (Ku band) was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR mcd bit0 = 0 [record is invalid]
- GDR mcd bit7 = 0 [swh quality]
- GDR mcd bit8 = 0 [sigma0 quality]
- GDR swh\_numval\_ku > 16
- GDR sigma0\_ku defined
- GDR swh\_ku > 0

#### 6.3.2 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

#### 6.3.3 sea-ice test

The sea ice fraction used here comes from the products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.3.4 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                   |
|-------------------|----------------------------------------------------------------------|
| not_water         | GDR mcd bit0 = 1 [invalid product]                                   |
| sea_ice           | CCI sea ice fraction >= 0.1                                          |
| swh_validity      | GDR swh_ku <= 0 or undefined<br>GDR mcd bit7 = 1 [swh quality]       |
| sigma0_validity   | GDR sigma0_ku <= 0 or undefined<br>GDR mcd bit8 = 1 [sigma0 quality] |
| ssh_validity      | unused (always 0)                                                    |
| waveform_validity | GDR swh_numval_ku <= 16                                              |
| swh_rms_outlier   | GDR swh_rms_ku <= 0 or undefined                                     |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test  |

#### 6.4 GFO

#### 6.4.1 sanity checks

Measurements are classified as **undefined** if swh and swh rms (Ku band) was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR bit02 of quality\_word\_1 = 0 [record is zero filled]
- GDR bit03 of quality\_word\_1 = 0 [A not in fine track]
- GDR bit07 of quality\_word\_1 = 0 [no smoothed VATT]
- GDR bit10 of quality\_word\_1 = 0 [SWH bounds error]
- GDR bit11 of quality\_word\_2 = 0 [land contamination]
- GDR surface\_type != 3 [ocean like]
- GDR swh\_numval\_ku = 10
- GDR swh\_rms\_ku / swh\_ku < 0.2
- GDR sigma0\_ku defined
- GDR swh\_ku > 0

#### 6.4.2 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

#### 6.4.3 sea-ice test

The sea ice fraction used here comes from the products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.4.4 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                                                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| not_water         | GDR surface_type == 3<br>GDR bit11 of quality_word_2 = 1 [land contamination]                                                                                                                     |
| sea_ice           | CCI sea ice fraction >= 0.1                                                                                                                                                                       |
| swh_validity      | GDR swh_ku <= 0 or undefined<br>GDR bit10 of quality_word_1 = 1 [SWH bounds error]                                                                                                                |
| sigma0_validity   | GDR sigma0_ku <= 0 or undefined                                                                                                                                                                   |
| ssh_validity      | unused (always 0)                                                                                                                                                                                 |
| waveform_validity | GDR swh_numval_ku != 10<br>GDR bit02 of quality_word_1 = 1 [record is zero filled]<br>GDR bit03 of quality_word_1 = 1 [A not in fine track]<br>GDR bit07 of quality_word_1 = 1 [no smoothed VATT] |
| swh_rms_outlier   | GDR swh_rms_ku <= 0 or undefined<br>GDR swh_rms_ku swh_rms_ku / swh_ku >= 0.2                                                                                                                     |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test                                                                                                                               |

#### 6.5 Envisat

#### 6.5.1 sanity checks

Measurements are classified as **undefined** if swh was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR mcd bit16 = 0 [retracking Ku]
- GDR mcd bit06 = 0 [wave form samples fault]
- GDR altim\_landocean\_flag = 0 [ocean like]
- GDR ku\_ocean\_retrk\_qua\_flags = 0
- GDR abs(off\_nadir\_angle\_wf) < 0.1
- GDR quality = 0
- GDR sigma0\_ku > 0
- GDR swh\_rms\_ku > 0
- GDR swh\_ku > 0

#### 6.5.2 SWH rms test

Besides, a test on swh rms (as provided in GDR for 1 Hz measurements) is performed, checking it is below an altimeter and swh dependant threshold. Measurements for which the swh rms is beyond this threshold are classified as **bad**. The threshold is defined following recommendations in "Global altimeter SWH dataset, P.Queffeulou, 2017":

• a polynomial fit:

 $P(swh) = 0.0384 \ swh^2 - 0.0500 \ swh + 0.8457$ 

#### 6.5.3 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

#### 6.5.4 sea-ice test

The sea ice fraction used here comes from the products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.5.5 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                                                                                                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| not_water         | GDR land != 0                                                                                                                                                      |
| sea_ice           | CCI sea ice fraction >= 0.1                                                                                                                                        |
| swh_validity      | GDR swh_ku <= 0 or undefined                                                                                                                                       |
| sigma0_validity   | GDR sigma0_ku <= 0 or undefined                                                                                                                                    |
| ssh_validity      | unused (always 0)                                                                                                                                                  |
| waveform_validity | GDR swh_numval_ku <= 18<br>GDR abs(off_nadir_angle_wf) >= 0.1<br>GDR quality != 0<br>GDR ku_ocean_retrk_qua_flags != 0<br>GDR MCD bit16 != 0<br>GDR MCD bit06 != 0 |
| swh_rms_outlier   | GDR swh_rms_ku <= 0 or undefined<br>measurements classified as bad when performing the SWH rms outlier<br>test                                                     |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test                                                                                                |

#### 6.6 Jason-1

#### 6.6.1 sanity checks

Measurements are classified as **undefined** if swh was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR surface\_type < 2 [open oceans or semi-enclosed seas, enclosed seas or lakes]
- GDR qual\_alt\_1hz\_swh\_ku = 0 [ocean like]
- GDR swh\_numval\_ku > 18
- GDR swh\_rms\_ku > 0
- GDR swh\_ku > 0

#### 6.6.2 SWH rms test

Besides, a test on swh rms (as provided in GDR for 1 Hz measurements) is performed, checking it is below an altimeter and swh dependant threshold. Measurements for which the swh rms is beyond this threshold are classified as **bad**. The threshold is defined following recommendations in "Global altimeter SWH dataset, P.Queffeulou, 2017":

- a look-up table is used for swh in the [0, 5m] range
- a polynomial fit for the [5m, 8m] range:

 $P(swh) = 0.0138 \text{ swh}^3 - 0.1864 \text{ swh}^2 + 1.0491 \text{ swh} - 1.0052$ 

• P(8m) is used for swh values beyond 8 meters

#### 6.6.3 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

#### 6.6.4 sea-ice test

The sea ice fraction used here comes from the AMSR L4 products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.6.5 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                      |
|-------------------|-------------------------------------------------------------------------|
| not_water         | GDR surface_type >= 2<br>qual_alt_1hz_swh_ku != 0                       |
| sea_ice           | CCI sea ice fraction >= 0.1                                             |
| swh_validity      | GDR swh_ku <= 0 or undefined                                            |
| ssh_validity      | unused (always 0)                                                       |
| sigma0_validity   | GDR sig0_ku_mle3 defined                                                |
| waveform_validity | GDR swh_numval_ku <= 18                                                 |
| swh_rms_outlier   | GDR swh_rms_ku <= 0 or undefined                                        |
|                   | measurements classified as bad when performing the SWH rms outlier test |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test     |

#### 6.7 Jason-2

#### 6.7.1 sanity checks

Measurements are classified as **undefined** if swh was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR surface\_type < 2 [open oceans or semi-enclosed seas, enclosed seas or lakes]
- GDR swh\_ku > 0
- GDR swh\_numval\_ku > 10
- GDR swh\_rms\_ku defined
- GDR sig0\_ku\_mle3 >= 5.

#### 6.7.2 SWH rms test

Besides, a test on swh rms (as provided in GDR for 1 Hz measurements) is performed, checking it is below an altimeter and swh dependant threshold. Measurements for which the swh rms is beyond this threshold are classified as **bad**. The threshold is defined following recommendations in "Global altimeter SWH dataset, P.Queffeulou, 2017":

- a look-up table is used for swh in the [0, 4.5m] range
- a polynomial fit for the [4.5m, 8m] range:

 $\texttt{P}(\texttt{swh}) = 0.00854127 \ \texttt{swh}^4 - 0.16602944 \ \texttt{swh}^3 - 1.21803198 \ \texttt{swh}^2 - 3.73409038 \ \texttt{swh} + 5.00280091$ 

• P(8m)= 3.06 is used for swh values beyond 8m

#### 6.7.3 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or greater than 5 meters are classified as **bad**.

#### 6.7.4 sea-ice test

The sea ice fraction used here comes from the AMSR L4 products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.7.5 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                      |
|-------------------|-------------------------------------------------------------------------|
| not_water         | GDR surface_type >= 2                                                   |
| sea_ice           | CCI sea ice fraction >= 0.1                                             |
| swh_validity      | swh_ku <= 0                                                             |
| ssh_validity      | unused (always 0)                                                       |
| sigma0_validity   | GDR sig0_ku_mle3 < 5. or undefined                                      |
| waveform_validity | GDR swh_numval_ku <= 10                                                 |
| swh_rms_outlier   | GDR swh_rms_ku undefined                                                |
|                   | measurements classified as bad when performing the SWH rms outlier test |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test     |

#### 6.8 Jason-3

#### 6.8.1 sanity checks

Measurements are classified as **undefined** if swh was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR surface\_type < 2 [open oceans or semi-enclosed seas, enclosed seas or lakes]
- GDR swh\_ku > 0
- GDR swh\_numval\_ku > 10
- GDR swh\_rms\_ku defined
- GDR sig0\_ku\_mle3 >= 5.

#### 6.8.2 SWH rms test

Besides, a test on swh rms (as provided in GDR for 1 Hz measurements) is performed, checking it is below an altimeter and swh dependant threshold. Measurements for which the swh rms is beyond this threshold are classified as **bad**. The threshold is defined following recommendations in "Global altimeter SWH dataset, P.Queffeulou, 2017":

- a look-up table is used for swh in the [0, 4.5m] range
- a polynomial fit for the [4.5m, 8m] range:

 $P(swh) = 0.00245436 \text{ swh}^4 - 0.04199479 \text{ swh}^3 + 0.28811371 \text{ swh}^2 - 0.77121584 \text{ swh} + 1.66388247$ 

• P(8m) = 2.4851 is used for swh values beyond 8m

#### 6.8.3 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or greater than 5 meters are classified as **bad**.

#### 6.8.4 sea-ice test

The sea ice fraction used here comes from the AMSR L4 products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.8.5 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                      |
|-------------------|-------------------------------------------------------------------------|
| not_water         | GDR surface_type >= 2                                                   |
| sea_ice           | CCI sea ice fraction >= 0.1                                             |
| swh_validity      | swh_ku <= 0                                                             |
| ssh_validity      | unused (always 0)                                                       |
| sigma0_validity   | GDR sig0_ku_mle3 < 5. or undefined                                      |
| waveform_validity | GDR swh_numval_ku <= 10                                                 |
| swh_rms_outlier   | GDR swh_rms_ku undefined                                                |
|                   | measurements classified as bad when performing the SWH rms outlier test |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test     |

#### 6.9 Cryosat-2

#### 6.9.1 sanity checks

Measurements are classified as **undefined** if swh was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR 'alt\_land' flag not set
- GDR 'range\_suspect' flag not set
- GDR 'hardware\_bad' flag not set [not in SAR mode]
- GDR 'swh\_suspect' flag not set
- GDR 'backscatter\_suspect' flag not set
- GDR swh\_rms\_ku defined
- GDR swh\_ku > 0

#### 6.9.2 SWH rms test

Besides, a test on swh rms (as provided in GDR for 1 Hz measurements) is performed, checking it is below an altimeter and swh dependant threshold. Measurements for which the swh rms is beyond this threshold are classified as **bad**. The threshold is defined following recommendations in "Global altimeter SWH dataset, P.Queffeulou, 2017":

- a look-up table is used for swh in the [-1, 4.5m] range
- a polynomial fit for the [4.5m, 8m] range:

 $P(swh) = 0.003712808782105 \ swh^3 - 0.022959435041166 \ swh^2 + 0.155517950243010 \ swh + 0.484687460175769$ 

• P(8m) = 2.1604 is used for swh values beyond 8 meters

#### 6.9.3 SWH outlier test

Last, an iterative filtering of outliers is performed over a window of 100 km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 3.9 standard deviation or greater than 5 meters are classified as **bad**.

#### 6.9.4 sea-ice test

The sea ice fraction used here comes from the AMSR L4 products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.9.5 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                      |
|-------------------|-------------------------------------------------------------------------|
| not_water         | GDR 'alt_land' flag is set                                              |
| sea_ice           | CCI sea ice fraction >= 0.1                                             |
| swh_validity      | GDR swh_ku <= 0 or undefined<br>GDR 'swh_suspect' flag is set           |
| sigma0_validity   | GDR 'backscatter_suspect' flag is set                                   |
| ssh_validity      | GDR 'range_suspect' flag is set<br>GDR 'hardware_bad' flag is set       |
| waveform_validity | not used (always set to 0)                                              |
| swh_rms_outlier   | GDR swh_rms_ku undefined                                                |
|                   | measurements classified as bad when performing the SWH rms outlier test |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test     |

#### 6.10 AltiKa

Measurements are classified as **undefined** if swh was not calculated in the source GDR product (fill value).

Measurements are classified as **bad** if one of the following sanity tests fails:

- GDR surface\_type < 2
- GDR ice\_flag = 0
- sigma0 >= 5.
- sea ice fraction < 0.1

The sea ice fraction used here comes from the AMSR L4 products by the CCI Sea-Ice project.

Besides, a test on swh rms (as provided in GDR for 1 Hz measurements) is performed, checking it is below an altimeter and swh dependant threshold. Measurements for which the swh rms is beyond this threshold are classified as **bad**. The threshold is defined following recommendations in "Global altimeter SWH dataset, P.Queffeulou, 2017":

- a look-up table is used for swh in the [0, 2.5m] range
- a polynomial fit for the [2.5m, 12m] range:

 $P(swh) = 0.00122599 \text{ swh}^3 - 0.01741631 \text{ swh}^2 + 0.17180005 \text{ swh} + 0.17894723$ 

• P(12m) is used for swh values beyond 12m

Last, an iterative filtering of outliers is performed over a window of 100km around each 1 Hz measurement (at least 4 valid measurements are required within the window): measurements which deviation to the mean swh within the window is beyond 5 standard deviation or 5m are classified as **bad**.

Among the remaining **good** measurements, measurements for which sea ice fraction is between 0. and 0.1 are classified as **acceptable**.

#### 6.9.4 sea-ice test

The sea ice fraction used here comes from the AMSR L4 products by the CCI Sea-Ice project.

Among the remaining **good** measurements, measurements for which sea ice fraction is greater than 0. but lower than 0.1 are classified as **acceptable**. If the sea ice fraction is greater than 0.1, measurements are classified as **bad**.

#### 6.9.5 SWH rejection flag

The SWH rejection flags are set as follows:

| flag              | criteria for which the flag is set                                      |
|-------------------|-------------------------------------------------------------------------|
| not_water         | GDR surface_type >= 2<br>GDR ice_flag != 0                              |
| sea_ice           | CCI sea ice fraction >= 0.1                                             |
| swh_validity      | not used (always set to 0)                                              |
| sigma0_validity   | GDR sigma0 < 5. or undefined                                            |
| ssh_validity      | not used (always set to 0)                                              |
| waveform_validity | not used (always set to 0)                                              |
| swh_rms_outlier   | GDR swh_rms_ku undefined                                                |
|                   | measurements classified as bad when performing the SWH rms outlier test |
| swh_outlier       | measurements classified as bad when performing the SWH outlier test     |

## Annex A: Calibration of Jason-1, Jason-3, Saral and Cryosat-2 missions

This annex describes the methodology used to calibrate the significant wave height (swh) estimated from Jason-1, Jason-3, Cryosat-2 and Saral. For the other missions of the Sea State CCI data set V1, the calibration formula obtained during the GlobWave project were maintained (see Section 4.1.2.3). Note that the calibration formula derived for Jason-1 during the GlobWave project has been updated since the new version (version E) of the Jason-1 Geophysicial Data Record is provided by AVISO (using MLE4 retracker for SWH and MLE3 retracker for sigma0) is used in the Sea State CCI project.

The calibrations of missions Jason-1, Jason-3, Cryosat-2 and Saral are performed against the Jason-2 data, as calibrated by Queffeulou et al. (2017). According to the GlobWave Annual Quality Control Report (AQCR), there was no specific quality problem in Jason-2 and the variability in terms of data quality was lower than for Jason-1 and Envisat (see Fig 2.3 and p10 in AQCR). During the GlobWave project, the Jason-2 swh data was calibrated based on GlobWave error analysis (1.041 x swh - 0.042). This calibrated Jason-2 swh data is considered as our reference data set for calibration. Note that this choice is likely to evolve in the future version of the Sea State CCI dataset.

Altimeter swh calibration is carried out by comparing swh measurements at cross-over locations between the altimeter to be calibrated and the reference altimeter (Jason-2 in our case). A cross-over data pair is defined each time the two satellite ground tracks intersect within a 60-min time window (Figure 1). In order to attenuate the impact of along-track noise (instrumental and retracking-induced noise) in the comparison, swh is averaged along n (7-9 depending on altimeter orbital velocity) consecutive measurements 25-km apart of the intersection points. swh at cross-over locations are then compared to estimate the calibration formula.



03/31/18-18:30:80:00:30 18:31:00 18:31:30 18:32:00 18:32:30 18:33:30 18:33:30 18:34:00 18:34:30 18:35:00 18:35:30 18:36:00 18:36:30 18:37:00 18:37:30

Figure 1. Top-left panel. Jason-2 (light grey) and Saral (dark grey) ground tracks on March 31 2018 with ground track intersection shown with black circles. Top right panel. Zoom on a ground track cross-over occurring within 1

hour. Bottom panel. Time-series of the along-track significant wave height corresponding to the ground tracks shown in the top right panel.

Visual assessment of Jason-1, Jason-3 and Saral swh measurements against Jason-2 calibrated swh measurements indicate a linear relationship between these missions (Figure 2, 3 and 4). Linear calibration formula for Jason-1, Jason-3 and Saral are obtained by fitting a least-square regression line through the Jason-2 against Saral and Jason-3 swh data. Note that the fitting was only applied for swh values larger than 1 m since altimeter measurements become very noisy at low sea states.



Figure 2. (Left) Scatter diagrams of Jason-2 swh against Jason-1 swh before (top) and after (bottom) calibration. (Right) Residual of Jason-1 swh – Jason-2 swh as a function of Jason-1 swh before (top) and after (bottom) calibration. The red dashed line is a linear fit through the data.



Figure 3. (Left) Scatter diagrams of Jason-2 swh against Saral swh before (top) and after (bottom) calibration. (Right) Residual of Saral swh – Jason-2 swh as a function of Saral swh before (top) and after (bottom) calibration. The red dashed line is a linear fit through the data.



Figure 4. (Left) Scatter diagrams of Jason-2 swh against Jason-3 swh before (top) and after (bottom) calibration. (Right) Residual of Jason-3 swh – Jason-2 swh as a function of Jason-3 swh before (top) and after (bottom) calibration. The red dashed line is a linear fit through the data.

For Cryosat-2 the relationship is no longer linear (Figure 5) and we use a second-order polynomial function to correct this mission. In order to avoid discontinuous and unrealistic corrections at high sea state, we apply this second-order polynomial corrections until an

upper threshold, corresponding to the swh values at which the polynom intersects the zero residual y-axis (in this case 7.67 m).



Figure 5. (Left) Scatter diagrams of Jason-2 swh against Cryosat-2 swh before (top) and after (bottom) calibration. (Right) Residual of Jason-3 swh – Jason-2 swh as a function of Cryosat-2 swh before (top) and after (bottom) calibration. The red dashed line is a linear fit through the data. The magenta dashed line is a second-order polynomial corrections applied up to 7.67 m.

In order to ensure that the calibrated altimeter swh are consistent over the whole time period covered by altimeter measurements, we compute the monthly global mean swh for each mission, within 60°S and 60°N. Figure 6 show time-series of global monthly means of un-calibrated and calibrated swh over 1992-2018, revealing how calibration of altimeter swh improves consistency between altimeters over this period.



Figure 6. Monthly global mean swh over the period 1992-2018 before (top panel) and after (bottom panel) calibration is applied.

#### Annex B: Validation of the Sea State CCI dataset V1

Validation of the Sea State CCI dataset V1 is based on comparisons of the altimeter swh data with in-situ buoy data and numerical wave model results. Statistical errors are computed for the significant wave height before calibration (swh), after calibration (swh\_adjusted), and after calibration and denoising (swh\_denoised).

An altimeter-buoy match-up is defined each time the altimeter ground track is less than 50 km from a buoy location and the buoy measurement is available within 30-min (following Queffeulou et al. 2004). For each match-up, the altimeter swh is averaged over along-track records lying within a 50-km-radius-circle centered on the buoy location and the buoy time-series is smoothed with a one hour (3-point) moving average before the nearest (in time) buoy record is stored for comparisons with the averaged altimeter swh.

Figure 7 shows the comparison between Jason-2 and in-situ buoy swh measurements during year 2017, when all wave buoys are considered (left) and when only offshore wave buoys 200 km away from the coast are considered (right).



Figure 7. Comparison between Saral and wave buoy swh measurements during year 2014, when all wave buoys are considered (left) and when only wave buoy 200km away from the coast are considered (right).

Bias, root-mean-square error (RMSE) and scatter index (SI) show much better agreement when coastal buoys (<200 km) are discarded from the analysis. Hence, the validation of altimeter swh was performed on a reduced data set including only offshore buoys.

Statistical metrics were computed for each mission, and each year, and the overall scores are provided in Table 1 for calibrated and denoised swh (swh\_denoised). With a minimum

number of 1018 match-up data for ers-1 and an average number of 6120 match-up data, all the computed values are statistically significant. Except for ers-1 (-7.2 cm), all the mission show a positive bias comprise between 1-10 cm. The root-mean-square error is below 26 cm for all missions, corresponding to a value lower than 11% once normalized by the mean of the observations. The scatter index is lower than 9% and the correlation coefficient higher than 0.98 for all missions.

| Mission   | year | match-ups | Bias (m) | RMSE (m) | NRMSE (%) | SI (%) | R     |
|-----------|------|-----------|----------|----------|-----------|--------|-------|
| ers-1     | 3    | 1018      | -0.072   | 0.259    | 9.946     | 8.409  | 0.984 |
| ers-2     | 17   | 9207      | 0.014    | 0.239    | 10.408    | 8.957  | 0.985 |
| envisat   | 11   | 8286      | 0.044    | 0.234    | 10.052    | 8.582  | 0.985 |
| gfo       | 9    | 5221      | 0.026    | 0.264    | 10.914    | 9.463  | 0.982 |
| topex     | 12   | 7797      | 0.014    | 0.236    | 9.735     | 8.388  | 0.987 |
| jason-1   | 12   | 11094     | 0.010    | 0.221    | 9.584     | 8.310  | 0.986 |
| jason-2   | 11   | 14395     | 0.069    | 0.211    | 9.667     | 7.857  | 0.988 |
| jason-3   | 3    | 4181      | 0.097    | 0.205    | 9.945     | 7.481  | 0.990 |
| saral     | 6    | 7876      | 0.088    | 0.214    | 10.141    | 7.956  | 0.988 |
| cryosat-2 | 9    | 7913      | 0.069    | 0.197    | 9.168     | 7.462  | 0.989 |

Table 1. Statistical metrics for the validation of denoised swh in the Sea State CCI dataset V1 against buoy data

Figure 8 shows the bias and NRMSE for uncalibrated swh (swh), calibrated swh (swh\_adjusted) and calibrated and denoised swh (swh\_denoised). We can see that the calibration carried out during GlobWave significantly decrease the bias for ers-1, ers-2, envisat, gfo and topex, but increase the bias for Jason-2. As a result, the bias also increases for some of the missions (Jason-3 and Saral) calibrated during this first stage of the Sea State CCI project, using the Jason-2 calibrated swh as a reference. The calibration methodology will therefore require improvements for the future versions of the Sea State CCI dataset.



Figure 8. Bias (left) and NRMSE (right) computed from the comparisons between altimeter and in-situ buoy data.

Comparison of the altimeter swh against wave model hindcast was also performed as a complementary validation with another independent data set. Modelled swh values were linearly interpolated along the satellite ground track and errors were computed. The wave hindcasts were produced with the spectral wave model WAVEWATCH-III © in the context of the ERC IOWAGA project directed by Fabrice Ardhuin (LOPS-CNRS). The model is forced by wind fields from the Climate Forecast System Reanalysis (CFSR) for the period 1992-2016 and wind fields from the operational analysis from the Integrated Forecast System provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period 2016-2018. The coverage is over the global grid from 78S to 80N at 0.5deg resolution with 3-hourly output fields. Depending on the year of reprocessing, the version of the model used are the stable releases v4.08, v5.05 and v6.02.

Figure 9 show the globally-averaged bias and normalized root-mean-square error between model and altimeter measurements for each mission of the Sea State CCI dataset V1. The bias is strongly attenuated after the swh measurements are calibrated (compare value for swh and swh\_adjusted). The bias between model and altimeter swh\_adjusted is lower than 10 cm for ers-1 and lower than 5 cm for all the other missions. The NRMSE for swh\_adjusted is lower than 20% for ers-1 and ers-2 and lower than 15% for all other missions. In addition, we see that the denoised swh parameter decrease by up to 20% and by 10% on average the NRMSE between model results and measurements.



Figure 9. Bias (left) and NRMSE (right) computed from the comparisons between altimeter and wave model hindcast.

<End of Document>